Secretion of functional human enzymes by Tetrahymena thermophila
نویسندگان
چکیده
BACKGROUND The non-pathogenic ciliate Tetrahymena thermophila is one of the best-characterized unicellular eucaryotes used in various research fields. Previous work has shown that this unicellular organism provides many biological features to become a high-quality expression system, like multiplying to high cell densities with short generation times in bioreactors. In addition, the expression of surface antigens from the malaria parasite Plasmodium falciparum and the ciliate Ichthyophthirius multifiliis suggests that T. thermophila might play an important role in vaccine development. However, the expression of functional mammalian or human enzymes remains so far to be seen. RESULTS We have been able to express a human enzyme in T. thermophila using expression modules that encode a fusion protein consisting of the endogenous phospholipase A1 precursor and mature human DNaseI. The recombinant human enzyme is active, indicating that also disulfide bridges are correctly formed. Furthermore, a detailed N-glycan structure of the recombinant enzyme is presented, illustrating a very consistent glycosylation pattern. CONCLUSION The ciliate expression system has the potential to become an excellent expression system. However, additional optimisation steps including host strain improvement as wells as measures to increase the yield of expression are necessary to be able to provide an alternative to the common E. coli and yeast-based systems as well as to transformed mammalian cell lines.
منابع مشابه
Isolation and characterization of a mutant of Tetrahymena thermophila blocked in secretion of lysosomal enzymes.
The development of a sensitive screening procedure for mutants of Tetrahymena thermophila blocked in secretion of lysosomal enzymes is described. By means of this procedure a mutant blocked in secretion of lysosomal enzymes has been isolated. This sec- mutant, MS-1, is constitutively blocked in release of at least six lysosomal enzymes, under both nutrient and non-nutrient conditions. MS-1 poss...
متن کاملAn aspartyl cathepsin, CTH3, is essential for proprotein processing during secretory granule maturation in Tetrahymena thermophila
In Tetrahymena thermophila, peptides secreted via dense-core granules, called mucocysts, are generated by proprotein processing. We used expression profiling to identify candidate processing enzymes, which localized as cyan fluorescent protein fusions to mucocysts. Of note, the aspartyl cathepsin Cth3p plays a key role in mucocyst-based secretion, since knockdown of this gene blocked proteolyti...
متن کاملExpression, secretion and surface display of a human alkaline phosphatase by the ciliate Tetrahymena thermophila
BACKGROUND Tetrahymena thermophila possesses many attributes that render it an attractive host for the expression of recombinant proteins. Surface proteins from the parasites Ichthyophthirius multifiliis and Plasmodium falciparum and avian influenza virus antigen H5N1 were displayed on the cell membrane of this ciliate. Furthermore, it has been demonstrated that T. thermophila is also able to p...
متن کاملProprotein processing within secretory dense core granules of Tetrahymena thermophila.
In the ciliate Tetrahymena thermophila, the polypeptides stored in secretory dense core granules (DCGs) are generated by proteolytic processing of precursors, and the mature products assemble as a crystal. Previous observations suggested that this maturation involves precise cleavage at distinct motifs by a small number of enzymes. To test these inferences, we analyzed the determinants for site...
متن کاملTetrahymena Functional Genomics Database (TetraFGD): an integrated resource for Tetrahymena functional genomics
The ciliated protozoan Tetrahymena thermophila is a useful unicellular model organism for studies of eukaryotic cellular and molecular biology. Researches on T. thermophila have contributed to a series of remarkable basic biological principles. After the macronuclear genome was sequenced, substantial progress has been made in functional genomics research on T. thermophila, including genome-wide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BMC Biotechnology
دوره 6 شماره
صفحات -
تاریخ انتشار 2006